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5 shows that there are only four mutually independent events. 
Hence any 5 of the 10 pairwise independent events are 
statistically dependent. 

If the experiment consists of drawing n cards with re- 
placement from a 52-card deck, then N = 52" = 22n x 
13". There are only 3n mutually independent events, but 
there are 5211/2 + 1 (for n even) pairwise independent events 
by Theorem 4 with k = 521/2. If one selects a random 
subset of 5 cards, then N = (52) = (4 x 7)2 x 3 x 5 x 
13 x 17. Hence there are at least 33 pairwise independent 
events, but only 10 mutually independent events. Even the 
existence of 10 mutually independent events is surprising, 
since the selections are without replacement. The next ex- 
ample is related to this phenomenon. 

If one takes a random sample of size n from a population 
of size r, then the selections are dependent. But N = r ... (r 
- n + 1) implies that there are at least n mutually inde- 
pendent events, and in fact many more, since many of the 
factors of N must be composite. This can be understood by 
noting that with a relabeling of the outcomes, this experi- 
ment can be thought of as selecting n independent values, 
one from the set {1, 2, . . ., r}, one from {1, 2, . . ., r - 
1}, and so forth. 

We next consider Bernstein's example and a natural gen- 
eralization. This well-known example goes as follows: Toss 
a fair coin two times. Let AI = "the first toss lands heads," 
A2 = "the second toss lands heads," and A3 = "an even 
number of tosses land heads." Here any two of A1, A2, A3 
are independent, but they are not mutually independent. The 
following generalizations extend this idea. Consider the ex- 
periment of tossing n fair coins. Let Ai = "the ith toss 
lands heads" for i = 1, . . ., n. Let A,,+1 = "the number 
of heads is even." It is well known and follows easily by 
mathematical induction that, for a fair coin, the probability 

of an even number of heads is one-half. It follows from this 
that any subset of n of the Ai (i = 1 ., n + 1) are 
independent, whereas Al, . . ., A,,+1 are dependent. The 
same conclusion holds for the experiment of selecting n 
numbers at random with replacement from the set {O, 1, 
. . ., p - 1}, for a prime p. Here Ai = "the ith number 
selected is zero," for i = 1, . . ., n, and A,, 1 = "the sum 
of the numbers is divisible by p." In this case N - p". 
Again the prime factorization of N is playing a role. For 
suppose that N were the product of n prime factors not all 
of which are the same. Then by the Corollary to Theorem 
5 there would not exist n + 1 events any n of which are 
mutually independent. Wong (1972) gave a different ex- 
ample of Ai (i = 1 . . ., n + 1) such that any subset of 
n are mutually independent, whereas AI, . ., A,,+ are 
dependent. It is interesting to note that in his example N = 

21', the nth power of a prime. 
The examples in this section illustrate that pairwise in- 

dependent events that are not mutually independent occur 
in many common situations. We do not claim, however, 
that the events considered are of practical interest. Thus 
Feller's statement still stands. It would be interesting to find 
an example that contradicts it. 

[Received June 1986. Revised September 1986.] 

REFERENCES 

Feller, W. (1950), An Introduction to Probability Theory and Its Appli- 
cationis (Vol. 1), New York: John Wiley. 

LeVeque, W. (1977), Fundamentals of Number Theory, Reading, MA: 
Addison-Wesley. 

Neuts, M. F. (1973), Probabilitv, Boston: Allyn & Bacon. 
Wong, C. K. (1972), "A Note on Mutually Independent Events," The 

American Statistician, 26, 27-38. 

Another Look at Some Results on the Recursive Estimation in 
the General Linear Model 

SIDDHARTHA CHIB, S. RAO JAMMALAMADAKA, and RAM C. TIWARI* 

Written mainly for its pedagogical interest, this note deals 
with the computational formulas for the recursive updating 
of weighted least squares parameter estimates and the re- 
sidual sum of squares in the general linear model under the 
assumption that the errors have a multivariate normal dis- 
tribution. This approach simplifies considerably the deri- 
vations of Haslett (1985). 

KEY WORDS: Multivariate normal; Weighted least squares; 
Maximum likelihood estimators; Score function. 

1. INTRODUCTION 

In a recent paper, Haslett (1985) derived computational 
formulas for the recursive updating of weighted least squares 
(WLS) parameter estimates and the residual sum of squares 
in the general linear model when more than one additional 
observation becomes available. These results generalize the 
updating expressions that were derived by Plackett (1950) 
for ordinary least squares estimators and by McGilchrist and 
Sandland (1979) for WLS estimators with only one addi- 
tional observation. 

In this article the results of Haslett (1985) are derived in 
a much simpler way by assuming that the errors have a 
multivariate normal distribution. We exploit the fact that 
under this assumption, WLS and maximum likelihood (ML) 
estimators are identical. This allows us to develop the re- 
cursions through a suitable Taylor series expansion of the 
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Professor, Statistics and Applied Probability Program, University of Cal- 
ifornia, Santa Barbara, CA 93106. Ram C. Tiwari is Assistant Professor, 
Department of Mathematics, University of North Carolina, Charlotte, NC 
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score function (i.e., the first derivative of the log-likeli- 
hood). The method we propose is similar in some ways to 
the Newton-Raphson procedure of finding the roots of the 
likelihood equations and does not seem to have been ex- 
ploited in the context of recursive updating. This approach 
circumvents the heavy algebra that has been necessary in 
all of the previous derivations. 

2. PRELIMINARIES 

Consider the linear model 

Yh = Xh / + el,, 

where Y1, = (Y(1)', . . ., Y(h)')', Xh = (X 1)' (h)') 
eh = (e(l)', . . ., e(h)')', Y(i) and e(i) are (ni x 1) random 
vectors, X(i) is an (ni x k) nonrandom matrix, and ,B is a 
(k x 1) unknown parameter vector. Let Nh = L?j ni. Let 
y(h + 1) denote an incoming group of observations. As- 
sume that el,+ I - N(O, E1?+), where 

E -IJE. Ch 1 

K h+ 1,h+ 11 

is a symmetric nonsingular matiix with lh = E e/,e,', C 
= Eehe(h ? 1)', and Eh+1,h+l = Ee(h + I)e(h + 1)'. 
Assume that 11, + is completely known and that X is of full 
rank. Define 

2 1 = X(h + 1) /3 ?Y c, l - Xh1/), 

-2.1 = -h+ 1,h+1 - C,l %,.h IChI 

P = X(h+ 1) - hC, -1 X,,, 

= E 2.1 + P (Xh ,i I Xli) P'. 

The pdf of Yh is 

f(Yh; /3) a exp{- ?/2 ((yl,-Xh/)' T l'(Yh-X,/8))}, 
(2.1) 

where a is the proportionality symbol, and the conditional 
pdf of Y(h + 1) given Yh iS 

f(y(h + l) y/,, 3) 

o exp{- 1/2 ((y(h + 1) - /,C2.1) X 'l(y(h + 1) - 2.1) 

(2.2) 

Hence 

d2 lnf(yl,; /3) =- (X I X,y' (2.3) 

8 lnf(y(h +1l)ly1,' :) = P' 12 J (y(h + 1) -12.1) 

(2.4) 

a2 Inf(y(h + 1)1Y,7' /) - p 

1 P- (2.5) 

3. UPDATING FORMULAS 

This section contains the two main results, Theorems 3.3 
and 3.4, which provide the recursive equations for the es- 
timates of ,B and the residual sum of squares. In each case 

we exploit the assumption of multivariate normality to sim- 
plify the derivations. 

Proposition 3.1. 

Xh h ,y , =X, X h'A, + P' I-' P. (3.1) Xh+1 I h I Xlh+ I =Xli Ih h -P 2.1P ( 
Proof. Since the natural logarithm of the pdf of Yh+ I can 

be written as 

lnf(yl,+; /8) = lnf(yh; 8) + lnf(y(h + 1)lYh, /), 

we have that the Hessians are connected by 

a2 ln f(y,l+ 1; /) 

a2 lnf(Yh; 3) a2 lnf(y(h + )lyh, 1) 

Now the result follows using (2.3) and (2.5). 

Using Proposition 3.1 alone, we obtain the following 
result that updates the variance-covariance matrix of the 
estimates of /3. It should be noticed that the standard method 
for deriving such a result involves actually inverting the 
relevant matrices. 

Proposition 3.2. 

(X,,'+ /,I+ X,,+l) = (X,', /,iX,,- 

- (xh1I,'x2,)'P'7'P(x,l'+1,+1Xh+)'. (3.2) 

Proof. The proof follows by premultiplying and post- 
multiplying both sides of Equation (3.1) by (XI,' X7.1 X,,) - 

and (XI,'+ 1 ;--+1I Xh+,)-< and rearranging terms. 

Remark 3.3. Sometimes the preceding recursion is stated 
in an alternative form, namely 

(Xh+l h +I X/h+ 1) = (Xs' 1/) 

- (X , l'X,l)-lP'QiP(X,' _X,lXh),1. (3.3) 

[See Haslett (1985), p. 185.] 
That (3.2) and (3.3) are identical is easy to establish. 

First note that 

= -1 - 1 -I1P(X1+'X,yQ X1+) P'X1', 

(3.4) 

which is proved by multiplying (3.4) by fl and using Prop- 
osition 3.2. Now we only need to show that 

P, 12.1 P(X,,+ l1 III+ | Xh+ l)_ I 

P'l Q P(X,'Z,y'Xh)-'. (3.5) 

Substituting for Q-' from (3.4) and using (3.2) yields the 
equality. The next result gives the updating exptession for 
the WLS estimates of /3, which, under normality, are also 
the ML estimates. This allows us to develop the recursions 
through a Taylor series of the score function based on f(Yh + 1; 
/3), and evaluated at f3S,+,1 around Ph. By this approach 
much of the algebra that characterized earlier derivations is 
eliminated. 

Theorem 3.4. Let /3x, (X,'s,7 lX1Y) 1Xx,7 1? y/ be the 
ML estimator of ,B corresponding to y,? based on groups 1 
to h. Then the recursive estimator for /,B, is given by 
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13h+i ~ + X~TXh<-1P'fP1l[y(h + 1)- Ph + I Ph + (Xh hX [y( 2.1 ], 

where 

X(h + 1)1, + c;, ,Y1 ( - Xh3h)- 

Proof. Expanding aI/af Inf(yl,+ ; 3h+ I) around /h in 
a Taylor series and noticing that the pdf is quadratic in ,B 
yields 

- ln f ( y1/ + 1; 13h+I) 0 ln f(Yh + I; 3h) 

+ lnf(Yh+l; 3h)(1h+1 - Ph)- 

Now since the first term on the right side is (ala,/) lnf(y(h 
+ I ) |yh, ), which equals P'l711(y(h + 1) - ^2.1) 
because of (2.4), and the second derivative term equals 
(Xh+ I lh+ IXh+1) we get 

A ~~ 
h+ 

13 +1 = f31 + (Xh' I I II Xh + I)1P 

x - [y(h + 1) - P2.1b (3.6) 

The result follows on applying (3.5). 

As a consequence of the recursion formulas we can derive 
the updating expression for the residual sum of squares 

SSE,j31) (, - Xh31'~r(Yl -Xh0 ollt:/) = (Yh? - Xh:) PhYlh l X1h 

where the subscript h indicates the number of groupings 
involved. 

Theorem 3.5. If 

SSEh(131) 
(y,, - Xh f3)07' (Yh - Xh fh) 

is the residual sum of squares, then 

SSEh+ l (1h+ I) = SSEh (1h) 

+ [y(h + 1) - 
^ 

2'O1]Q [y(h + ) - /2.I]. 

Proof. Expanding SSE,, +I (1,8/ + 1) in a Taylor series around 
f and collecting the second and third terms of the expan- 
sion, we get 

SSEh+l(/3h+l) = SSEh+l(13h) 

- (Ph + - /)'(X, +' Ih + I Xli + 1I) (/1 + I -/3 ) (3.7) 

Equating the exponents in 

f(yl,+ I; /) = f(yI,; /) *f(y(h + I) Yh /), 

we have that for all /3, including /3S, 

(Yh+1 - Xh+lg)' qh+4(y,+l - Xh+1/3) 

(Y, -Xh0)'1T- (Yh -X, 3) 

+ [ y(h + 1)-,u2. ,'2.1' [ y(h + 1) - /2.1] (3.8) 

Evaluating (3.8) at Ph and using (3.6) and (3.7) gives 

SSE,,+ 
l(h+)= SSEh(,,) + (y(h + 1) - /2.1) 

X [IP h - - + I1+I) 

x (y(h + 1) - /2.1) 

From (3.4) the matrix in square brackets is f- and hence 
the result is proved. 

[Received Julne 1986.1 
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Accent on Teaching Materials 
HARRY 0. POSTEN, Section Editor 

In this section The Amertican Staltistiaian publishes announcements and 
selected reviews of teaching materials of general use to the statistical field. 
These may include (but will not necessarily be restricted to) curriculum 
material, collections of teaching examples or case studies, modular in- 
structural niaterial, transparency sets, films, filmstrips, videotapes, prob- 
ability devices, audiotapes. slides, and data deck sets (with complete 
documentation). 

Authors, producers. or distributors wishing to have such materials an- 
nounced or reviewed should submit a single, complete copy of the product 

(three copies of printed material double-spaced) to Associate Editor Harry 
0. Posten, Statistics Department. University of Connecticut. Storrs. CT 
06268. A statement of intention that the material will be available to all 
requestors for a minimunm of a two-year period should be provided, along 
with information on the cost (includinig postage) and special features of 
the material. Inforination' on classroonm experience may also be included. 
All materials submitted miust be of general use for teaching purposes in 
the area of probability and statistics. 

Exploring Statistics With the IBM PC (Version 85.0). 
David P. Doane. Reading, MA: Addison-Wesley, 
1985. Softbound manual, 1 program diskette, 1 
database diskette. $39.95. 

The heart of this statistical package is a single diskette containing 
a set of programs called the EXPLORE programs. These programs 

are designed to perform most of the statistical procedures used in 
a first or second course in statistical methods and are designed to 
be used with no computer background and negligible computer 
learning. The system operates under any of the disk operating 
systems DOS 1.0, 1. 1, or 2.0. 

The EXPLORE system is entirely menu or dialogue driven. The 
user need only answer questions or select from a menu on the 
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